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ABSTRACT 
/.r- 7Sf 

A mathematical method i s  presented fo r  the computation of the stage 
weights of multistage rocket systems t o  give minimum rocket-system cost 
for  a given mission. 
load weight and a velocity requirement. The rocket system can have any 
number of stages of various types of rockets. 
the usual factors  of individual-stage specific impulse and s t ructural  
weight fraction, the individual-stage specific cost o r  cost per pound i s  
a l so  included. 
set of formulas f o r  the stage weight ra t ios .  
a r e  dropped from the equations, the method gives the same resu l t s  as the  
simpler concept of optimization with respect t o  weight. 
a r e  included i n  one technique. 
great differences in stage weight r a t io s  result when optimizing with 
respect t o  w e i g h t  or cost. 
d i f f e r  by 25 percent in the first example and 300 percent l n  the second 
example. 

.The mission is assumed presentable i n  terms of pay- 

Besides taking in to  account 

The solution i s  presented i n  the form of a f a i r l y  concise 
If the stage specific costs  

. 
Thus both methods 

Two examples are given which show that 

The re lat ive vehicle costs by the  two methods I 1 
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TElE OP!lTMIZATION OF M"L"ISTAGE ROCKXI'S 

t WITB RESPECT To COST 

By Paul R. Bill 
NASA Langley Research Center 

INTRODUCTION 

To accomplish space missions requiring the high ve loc i t ies  associated 
with escape from the earth, tandem-staged rocket systems are essential .  

selection of an appropriate number of stages, the selection of the type 
of motor f o r  each stage, and f ina l ly  the determination of the correct 
w e i g h t  of each of the stages are more complex tasks than ever before. 
The theme of the present paper i s  that the selection of the booster system 
and the  optimum rocket sizes t o  be used should be based on the economics 
of a successful mission achievement. 
optimization method t o  accomplish t h i s  result. The complex s i tuat ion i n  
which we f ind ourselves with respect t o  the wealth.of possible motor types 
from which t o  choose may be be t te r  understood i f  a f e w  remarks are given 
pertaining t o  the history of rocket motors and staged rocket systems. 

The earliest recorded use of rockets occurred i n  1232 A.D. when a 
son of Genghis Khan attacked Kaifeng, the capi ta l  of Honan province, 
China, with solid-propellant rockets. Such rockets were also used effec- 
t i ve ly  by Indian soldiers against the Br i t i sh  i n  the Br i t i sh  Indian 
Campaign. A s  a resu l t  of t h i s  experience the Bri t ish developed t h e i r  own 
solid-propellant rockets which were used against Napoleon and against the  
Americans i n  the War of 1812. 
the  cannon f o r  a time but was revived i n  World War 11, being employed 
extensively by the Russians at Stalingrad and by the Allies i n  the  Pacific 
and European theaters  i n  single-stage ground-to-ground and air-to-ground 
applicationg. The NACA a l s o  employed two-stage solid-propellant rocket 
systems for  transonic and supersonic aerodynamic tests a t  t h e i r  Wallops 
Island launch base during the l a t t e r  part of World War 11. 

-+,With the current technology available f o r  many types of rockets, the 

The substance of the paper i s  an 

The use of rocket a r t i l l e r y  gave way t o  

Liquid-propellant rocket motors were introduced experimentally by 
R. H. Goddard i n  1926 and i n  practice by the Germans i n  World War I1 i n  
t h e i r  V-2 application that ii-sed a1 coho1 and licuid oxygen as ?mpellants- 
Subsequently the Russians and Americans developed liquid-propellant IRBM's 
and ICBM's that u t i l i zed  petroleum fuel. 

Needing higher speeds f o r  aerodynamic tes t ing,  the NACA developed 

N e x t ,  
three-, four-, five-, and six-stage solid-propellant rocket vehicles and 
demonstrated the good r e l i a b i l i t y  of these multistage vehicles. 



the  U.S.  military services, with the cooperation of American industry, 
developed the three-stage Polaris,  the three-stage Minuteman, and the 
two-stage Pershing. These vehicles gave the United States  a complete 
second generation of solid-propellant b a l l i s t i c  missiles. Concurrently 
the NASA developed the four-stage solid-propellant rocket o rb i t a l  Scout 
system. 

The advent of the s a t e l l i t e  witnessed the ear ly  use of l iquid- 
propellant lower stages with solid-propellant upper stages. 
upper stages with more exotic storable and restar table  l iquid propellants 
have been ut i l ized,  as i n  the  Atlas-Agena system. 
stages are  under current development t o  obtain the highest possible spe- 
c i f i c  impulse, as i n  NASA's Saturn rocket vehicles. 
solid-propel1 
systems, main1 3 as replacements f o r  first stages. 

Recently, 

Hydrogen-fuel upper 

Extremely large 
t rockets are under consideration fo r  use i n  a l ternate  

T h i s  short history i l l u s t r a t e s  the ever growing range of possible 
rocket types t o  choose from and the  ever growing complexities of rocket 
systems. 
rockets fo r  upper stages, current thinking would employ them as the f irst  
stage. Thus the permutation, or  order, i s  an additional consideration i n  
multistaged systems. 

Note tha t  w h i l e  e a r l i e r  space applications used solid-propellant 

Optimization studies can be expected t o  strongly aid o r  guide the 
choice of motor type fo r  each stage and t o  dictate  the appropriate s i z e  
o r  weight f o r  each stage. The older optimization methods had as t h e i r  
objective the optimization of performance or, what amounts t o  the same 
thing, minimization of t o t a l  weight f o r  a given performance as dictated 
by the mission. 
methqds fo r  such optimization. 
only the stage j e t  velocit ies,  but later methods (refs. 1 t o  3) a lso  took 
in to  account the stage s t ructural  mass fractions,  which i s  the  fract ion 
of i ne r t  (nonpropellant) weight i n  each stage. With the advent of space 
programs i n  which the rocket systems w i l l  cost millions or  even b i l l i ons  
of dol lars ,  it seems very important t h a t  the objective of the optimization 
system be t o  minimize the cost. This i s  currently being done by machine 
programing Qhethods wherein a l l  possible parameters are varied systemati- 
ca l ly  i n  what amounts t o  a "trial-and-error" procedure feasible only 
because of the high speeds of modern computing machines. The method 
herein presented is ,  by contrast, a mathematical method f o r  the calcula- 
t ion  of optimum staging r a t io s  f o r  minimum cost from given formulas. 
l=bcr rpnlli7.Pa is sx&t, >eir?g t h e  5-e =E +,h,st req~ i rpc?  h;' thp cic?er 
methods which minimized weight. 

Numerous a r t i c l e s  have been written giving mathematical 
The ea r l i e s t  methods took in to  account 

The 
- --&--- -- 

The method applies t o  any number of stages and takes in to  account 

S t q e  specific costs are, in turn, determined by 
the stage je t  velocit ies,  stage mass fractions, and stage specific costs  
(do l la rs  per pound) 
the type of rocket and the n-er of anticipated firings. Tbe ef fec t  of 
reliabil i ty is also considered. 



- 3 -  

For systems l i ke  the Polaris o r  Minuteman where a l l  stages are 
similar and where dol lar  costs per pound fo r  each stage are not very 

, di f femnt ,  optimization w i t h  respect t o  gross weight may be expected t o  
approximate a minimum-cost vehicle. However, when 'stages w i t h  greatly 
different  costs per pound are  used, as when liquid-fuel stages a re  com- 
bined w i t h  the cheaper solid-fuel stages, optimization with respect t o  
gross weight i s  misleading, as will be shown by two examples. 

N o  mathematical optimization procedure f o r  staged rockets can be 
expected t o  predict precise f ina l  resul ts  fo r  e i ther  gross weight o r  
cost, and such'methods should not be expected t o  replace detailed design 
studies. However, optimization procedures can be expected t o  permit the 
selection of the best combination of rockets fo r  the system and t o  or ient  
design studies quickly,  Furthermore, the e f for t  eqended i n  making a f e w  
optimization calculations based on a mathematical procedure is almost 
nothing compared with the value of such calculations i n  selecting systems 
and in orienting the laborious detailed weight and cost studies which 
must be done eventually fo r  the system selected. 

SYMBOLS 

stage specific cost, dollars/lb 

t o t a l  rocket cost per firing, dol lars  

t o t a l  rocket cost per successful f i r ing ,  dol lars  

acceleration due t o  gravity, f%/sec ,. 

staging mass ra t io ,  w3 
+ W j + g  + + W n  + WL W j + l  

t o t a l  number of stages i n  tandem 

number of rockets in a stage 
0, 

stage r e l i ab i l i t y ,  or probability of succeseful operation 

wj + w:;; + ... + wii + WL 
j t h  stage mass ra t io ,  W 3 3  + W j + l  + 0 . .  + W n  + WL 

j e t  velocity, ptlsec 

idea l  velocity at  nth stage burnout 

\ 
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WO 

wL 

P 
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QI 

stage weight, incli 

gross weight, l b  . 

payload weight, l b  
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aes inters t  structure and controls, 

stage structural  weight fraction 

Lagrange multiplier 

res t ra in t  i b c t i o n  

Subscripts : .. 
l,2,3, ..-j,... n 

The stage weights W must include the weight of interstage connec- 
t ions  and the w e i g h t  of controls. The stage dxuc tu ra l  weight f ract ions 
must include these weights also. 
as the r a t i o  of the stage weight at stage burnout t o  the stage weight 
loaded with propellant. 

lst, a d ,  3rd, ... jth, ... nth stages 

j3 
The structural  weight f ract ion i s  defined 

. - . . . - . . 

ANALYSIS 

The factors  assumed known fo r  rockets of a given type are: struc- 
t u r a l  weight fractions 
per pound c j .  The quantit ies ' to be found are: 
and'ktage w e i g h t s  Wj fo r  minimum mission propulsion cost. In this anal- 
ysis it i s  assumed that each p j  and c j  i s  constant within the limits 
of weight variation considered f o r  a given stage. 

Pj, effective j e t  veloci t ies  v j ,  and stage cost 
stage mass r a t io s  r j  

The cost of an n-stage rocket system i s  given by 
4 

--- 

1 '  c = CIWl + c2w2 + c w + ... + cnwn 3 3  
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To obtain the cost per successful propulsion mission, we must divide 
the  cost of the vehicle and payload by the product of t he  stage 
reliaulities. This cost includes the payload cost. -. 

The stage r e l i a b i l i t y  depends on the  r e l i a b i l i t y  of the rocket or 
rockets comprising the stage and on the number of such rockets clustered 
together. Assuming tha t  the number of motors clustered i s  the same and 
that the stage r e l i a b i l i t y  i s  constant, it i s  easy t o  show tha t  the same 
stage weights resu l t  irrespective of whether equation (1) or ( l a )  i s  used 
i n  the derivation of t@e optimization formulas. 

The cost i s  t o  be minimized subject t o  the condition that  a given 
payload i s  accelerated t o  a given velocity, which of course depends on 
the assigned mission. The usual optimization~procedure i s  t o  assign an 
idea l  (or  gravity-free drag-freehelocity V i  that  experience o r  tra- 
jectory computation indicates is the equivalent of the given mission 
actual  burnout velocity. The speed equation is  then extremely simple: 

Vi = v1 log rl + v2 log r2 + ... + vn log rn (2) 

The Lagrangian multiplier method is convenient for  this problem. 
The Lagrangian equation for this case is simply 

L = C + h g l  (3) 

where C i s  the sum t o  be minimized and (d i s  the velocity res t ra in t  
obtained from equation (2) and given by 

.-. . - - -~ - - 

I 
gl = vi - v l  log rl - v2 log r 2  = ... - vn log rn (4) 

- ~ _ _  
Substi tuting equations (1) and (4) into equation (3) gives 

L = + c2w2 + ... + 5 w n  + A ( V ~  - v i  log rl 
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Taking the derivatives of t4e 
the weights WJ and equating 

3 

Lagrangian equation (5) with respect t o  
t o  zero yields 

o r  

= - 3 - Constant aw, A 
J 

Note that can be ‘expressed as 
awj 

Getting x, x, etc. of equation (7) from equation (4) and combining arl ar2 
equation (7) with equation (6) yields 

J where j takes all values from 1 t o  n. The expressions for - ar1 
awJ - ar2 etc., can be obtained from the definition of the staging r a t io s  aw, 

J 

b 
5 - 1 w1 + w2 + . e .  + wn + WL 

+ w2 + ... + wn + W L  j3 w 11 

W2 + e . .  + Wn + WL 
J -  

p2w2 + 0 . .  4. wn + WL 

(9) 
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ar, ar, 

b aw, aw, Substituting the values of -# - # etc., in equation (8) and using . 
J * u  

the following identities: 

WO 

w, - w, - w, 

wo - w1 

t o  simplify equation (8) yields the 
stage mass-ratios 5: 

J etc. 

following set of equations for calcu- 

v3ml?2 
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Formulas f o r  greater numbers of stages than five can nuw be written by 
inspection.. A l l .  staging rat io8 can be calculated by the formula 

*, 

f o r  example 

The procedure t o  dbtain the stage mass ra t ios  i s  t o  take a t r ia l  
value of rl and c d c a a t e  wO/A from equation (u), r2  from equa- 
t i on  (12) , 
from equation (15) , e tc . ,  according t o  the number of s t a g e s .  With each 
step, the values of m required are  obtained from equation (16). Sub- 
s t i t u t e  the trial set of r 's i n  equation (2) t o  calculate the ideal  
velocity. Revise rl and recalculate the other r's a s  required t o  
give the desired ideal  velocity. It should be noted that each set of 
r's defines a minimum cost set  of rockets for  the corresponding values 
of V i  as given by equation (2). 

r3 from equation (13), r4 from equation (14) , and r5 

Once the stage mass r a t io s  have been determined, calculate the stage 
w e i g h t  8 from the known values of mj , starting with the last stage. 

.. 

Then, the costs are obtained from equations (1) and (la). 

In order t o  calculate the minimumweight se t  of rockets f o r  a given 
idea l  veloci ty  performance, let the values of specific cost c l ,  
c3, c4, etc., i n  equations (11) through (15) e q u  unity. me c ' 6  then 
disEipp?ar from these equations. Then follow exac t ly the  same procedure 
outlined above t o  obtain minimum cost using equations (11) through (17). 

c2, 

1 



- .  . 

- 9 -  

-1 

t 
Le, be required t o  send a payload of 16,6,~ pounds t o  an escape 

Trajectory studies available indicate an idea l  speed of 36,000 f t /sec.  
velocity of 40,000 f t /sec i s  required. 
system composed of a clustered solid-fuel first stage, together with 
clustered hydrogen-fie1 second and th i rd  stages. 
the different stages, together with the values of p and v, are l i s ted  
i n  tab le  I. 
the stage mass'ratios f o r  m i n i m  cost were determined by the procedure 
described. These r a t i o s  and the stage w e i g h t s  and costs are also given 
i n  table I, case A. 

It i s  desired t o  investigate a 

The costs per pound fo r  

From these data and from equations (ll), (12), (13) ,. and (2) , 

* 
I n  order t o  minimize the weight, the same procedure and equations 

are  used except that  the cost per pound i s  taken t o  be the same f o r  a l l  
stages; that  is, c1 = c2 = c3 = 1. The C I S  then disappear from equa- 
t ions  (11) , (12), and (13). Using the same assumptions as i n  the first 
part of Example 1, the result ing stage w e i g h t s  and costs were computed 
and are given i n  table I, case B. These results are ident ical  t o  those 
obtained by other methods, such as reference 1. 

The t o t a l  cost per shot and w e i g h t  per  shot f o r  both cases are shown 
For the minimum-cost solution, it i s  seen i n  the last column of table I. 

that the cost i s  only 0.76 of the cost f o r  the minimum-weight solution, 
although the w e i g h t  i s  1.21 that of the mininun-weight solution. 
obtain the  cost per successful shot, the stage reliabilities must be esti- 
mated. 

To 

This w i l l  be demonstrated i n  example 2. 

. 

The second example w i l l  be a four-stage vehicle w i t h  the same require- 
ment; namely, a payload of 16,600 pounds and an ideal velocity of 
40,000 f't/sgc. 
fue l  upper stages: 

Consider a solid-fuel first stage with three hydrogen- 
Case A, minimize C O S t j  Case B, minimize w e i g h t .  

The costs per pound f o r  the different stages, together with the 
values of p and v, are l i s t e d  i n  table 11. Making use of the same 
zrocedures as before with equations (11) , (12) , (13) , ( l k ) ,  and (2) , the 
stage mass r a t i o s  for  minimum cost were computed. 
t he  stage weights and coeta>are Shawn i n  table II, case A. 

These together wick 
- ..-. - 
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Minimization of weight is accomplished by putting 

c1 = c2 = c3 = c4 = 1 t 

in equations (11) t o  (14) and resul ts  in a value of rl l e s s  than 1. 
This indicates a negative first stage, which of course i s  impossible. 
Le t  rl = 1, which means that the rocket system would not have a solid 
first stage but would consist of a three-stage hydrogen system, having 
the stage weights and stage costs per shot shown i n  table 11, case B. 

Since we are now comparing rockets with d i f fe ren t  numbers and types 

For 
of components and consequently different reliabilities, the rocket cost 
comparison must be basdd on the cost per successful rocket mission. 
simplicity in the following, the control r e l i a b i l i t y  i s  not considered. 
For our purpose l e t  us assume the number of motors i n  pa ra l l e l  shown i n  
table  11. We a l s o  assume that the r e l i a b i l i t y  of each hydrogen motor i s  
0.96 and that the  r e l i a b i l i t y  of each solid motor i s  0.99. 
r e l i a b i l i t y  can be estimated by raising the motor r e l i a b i l i t y  t o  a power 
equal t o  the  number of stages i n  paral le l .  

Each stage 

Thus f o r  case A: 

per successfui. shot, inciuiing payiU&. 

I 



For case B (continuing with the f i c t i t i o u s  first stage) : 

c \ 

* P I - 1  

and 

81,000 = $80,087,000 
cs = 0.4243 

33f9 

per successful shot, including payloads. 
tance of r e l i ab i l i t y .  

This value emphasizes the impor- 

I n  example 2 there i s  about $9 million difference i n  cost per shot 
f i r e d  but there I s  about $47 mill ion per BuccessfU shot difference 
between optimizing with respect t o  cost and optimizing with respect t o  
performance . 

- - 
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. *  

Stage 1 Stage 2 ' Stage 3 
Total weight 

and 
Cost /Shot 
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Stage 1 Stage 2 Stage 3 Stage 4 

, Case A: 
Minimum 

cost 

Case '13: 
Minimum 
weight * 

I 

- -. - .----I 

26 26 26 

2.1858 2.1858 2.1858 
208,100 76,830 28,360 

5,4ll,000 1,998,000 737,000 
4 2 1 

0.8493 0.9216 0.g60 

0.14 0.14 0.14 
13,524 13,524 13,524 

4 1 CJWj a $~3,783,00O/Shot 
1 

23 783 Oo0 = $32,620,000/successfi~ shot 1 cs = ;.& 
c 

v, ft/sec .I None 
r...... 1 
W,lb 0 
C W , $ - .  . . 0 
p . . . . . ,  0 
P o .  0 . .  0 ,  1 

1 Wj = 922,370 lb 
2 

r c 4  

aAdJustea for low-altitude operation. 


